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Abstract. In this study, optimal parameter estimations are
performed for both physical and computational parameters in
a mesoscale meteorological model, and their impacts on the
quantitative precipitation forecasting (QPF) are assessed for
a heavy rainfall case occurred at the Korean Peninsula in June
2005. Experiments are carried out using the PSU/NCAR
MM5 model and the genetic algorithm (GA) for two param-
eters: the reduction rate of the convective available potential
energy in the Kain-Fritsch (KF) scheme for cumulus parame-
terization, and the Asselin filter parameter for numerical sta-
bility. The fitness function is defined based on a QPF skill
score. It turns out that each optimized parameter significantly
improves the QPF skill. Such improvement is maximized
when the two optimized parameters are used simultaneously.
Our results indicate that optimizations of computational pa-
rameters as well as physical parameters and their adequate
applications are essential in improving model performance.

Keywords. Meteorology and atmospheric dynamics (Con-
vective processes; Mesoscale meteorology; Precipitation)

1 Introduction

Numerical weather/climate prediction models contain nu-
merous parameterizations for physical processes and numer-
ical stability. Parameterizations are based on physical laws
but typically contain parameters whose values are not known
precisely. The values of the parameters directly or indirectly
affect the performance of model, and thus uncertainties in pa-
rameter values may lead to sensitive results, especially with
high resolution and sophisticated microphysics (e.g.,Park
and Droegemeier, 1999). Accordingly, optimal estimation
of parameters is one of the essential factors in improving the
accuracy of numerical forecasts.
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Recently, efforts have been made to obtain better estima-
tion of parameters for numerical forecast models using var-
ious methods such as the variational technique using a full-
physics adjoint model (Zhu and Navon, 1999), the Bayesian
stochastic inversion (Jackson et al., 2004), the downhill sim-
plex method (Severijns and Hazeleger, 2005), and the ensem-
ble Kalman filter (EnKF) (Aksoy et al., 2006).

The genetic algorithm (GA) has also been applied to some
parameter estimation problems. Compared to traditional op-
timization methods based on the gradient of a function, the
GA is more appropriate when the function includes some
complexities and/or discontinuities (Barth, 1992). Major ad-
vantages of the GA include that: 1) derivatives of a fit func-
tion with respect to model parameters are not required; and
2) nonlinearity between the model and its parameters can
be handled (Holland, 1975; Goldberg, 1989; Charbonneau,
2002).

The parameter estimation problems have been explored to
a wide scope including the land surface parameters (Jackson
et al., 2004), the radiation and cloud parameters (Severijns
and Hazeleger, 2005), the vertical eddy mixing coefficient
(Aksoy et al., 2006), and even for the purpose of experiment
design (Barth, 1992). However, application has seldom been
made on the quantitative precipitation forecasting (QPF).

This study focuses on optimal parameter estimation to im-
prove the QPF skill in a mesoscale meteorological model us-
ing the GA. Section 2 describes the model and experiments,
and Sect. 3 explains the details of GA for parameter estima-
tion. Results are discussed in Sect. 4, and conclusions are
provided in Sect. 5.

2 Case, model and experiments

A heavy rainfall case in Korea is selected for experiments.
It occurred in the west-central part of the Korean penin-
sula, associated with a summer monsoon front, with a local
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maximum 6-h accumulated rainfall of 100 mm in Seoul from
12:00 UTC to 18:00 UTC 26 June 2005.

In this study, the 5th-generation PSU/NCAR Mesoscale
Model (MM5) version 3.6.3 (Grell et al., 1994) is employed.
The computational domain consists of 218×181 grids in the
horizontal, with a resolution1x=1y=18 km, and 35 layers
in the vertical. The MM5 is integrated up to 12 h starting
from 06:00 UTC 26 June 2005, with a timestep1t=45 s.
Schemes for physical processes include: the MRF PBL, the
Kain-Fritsch (KF) cumulus parameterization, the Dudhia ra-
diation and RRTM, the Schultz microphysics, and the five-
layer soil scheme (seeGrell et al., 1994).

For the parameter estimation study, we focus on the clo-
sure assumption of the KF parameterization and the Asselin
filter coefficient in MM5. The “closure” in the KF param-
eterization relates the intensity of convective activity to the
resolved-scale properties in a model, and assumes that con-
vection consumes at least 90% of the environmental con-
vective available potential energy (CAPE) over an advec-
tive time period (Kain, 2003). However,Saito et al.(2006)
found that this setting tended to overstabilize the model at-
mosphere, making rainfall decrease with time. In this study,
an experiment will be carried out to obtain the optimal value
of the reduction rate of CAPE (ε) in the KF scheme.

The temporal differencing in MM5 consists of leapfrog
steps with an Asselin filter (Asselin, 1972). Splitting of the
solution associated with the leapfrog scheme can be avoided
by using this filter. It is applied to all variablesα as

α̂t
= (1 − 2ν)αt

+ ν
(
αt+1

+ α̂t−1
)

, (1)

whereα̂ is the filtered variables, andν ∈ [0, 1] is the Asselin
filter parameter. The value ofν is set to 0.1 in MM5 for all
variables (Grell et al., 1994). However,Bryan and Fritsch
(2000) found that the Asselin filter parameter used in MM5
is a source of the unphysical thermodynamic structures. An-
other experiment in this study will focus on the optimal esti-
mation of the Asselin coefficient.

3 Methodology of parameter estimation

This study aims at performing optimal estimations of two pa-
rameters in MM5 using the GA. The GA is a global optimiza-
tion approach based on the Darwinian principles of natural
selection. Developed from the concept ofHolland(1975), it
seeks the extrema of complex function efficiently – seeGold-
berg(1989) for a detailed description.Deb(2000) discussed
an efficient constraint handling method for the GA.

A key concept in the GA is the chromosome. A chromo-
some contains a group of numbers that completely specifies a
candidate during the optimization process. Typically, the GA
uses crossover, mutation, and reproduction to provide struc-
ture to a random search. The GA also uses randomization
heavily in choosing a chromosome that will propagate to fu-
ture generations. In general, the average fitness of individuals

increases with each generation, through the process of natu-
ral selection. In each successive generation, individuals with
just good genes propagate their genetic code. The genetic
code that determines the fitness of an individual is termed,
logically enough, the chromosome of that individual. Given
a chromosome, the GA should be able to ascertain its fitness.

For the parameter estimation experiments in this study,
a GA package called the PIKAIA (Charbonneau, 2002) is
employed. Each generation has 20 chromosomes. The
crossover probability is set to 0.85, implying that 85% of the
chromosomes in a generation are allowed to crossover in an
average sense. The maximum and minimum mutation prob-
ability is set to 0.05 and 0.005, respectively.

Internally, the PIKAIA seeks to maximize a functionf (X)

in a boundedn−dimensional space,

X ≡ (x1, x2, . . . , xn), xk ∈ [0.0, 1.0] ∀ k . (2)

In our problem, there exist two adjustable parameters, i.e.,
n=2. Then we may associate the reduction assumption of
the KF schemeε with x1 and the Asselin filter parameter
ν with x2. The ranges of parameters are 0≤ε≤0.95 and
0.01≤ν≤0.3.

The function to be optimized (i.e., Fitness) is defined by
using a QPF skill score, the equitable treat score (ETS)
(Schaefer, 1990),

Fitness=

∑
i

ETSi, i = 1, 2, . . . , 100, (3)

wherei is the precipitation threshold in mm. Here, the ETS
is defined as:

ETS =
H − R

F + O − H − R
, (4)

whereH is the number of hits,F andO are the numbers of
samples in which the precipitation amounts are greater than
the specified threshold in forecast and observation, respec-
tively, andR is the expected number of hits in a random fore-
cast –R=FO/N , whereN is total number of points being
verified.

Each generation includes 20 individual MM5 runs as a
function ofε andν. Every individual run with the two param-
eters is encoded by chromosomes and returns the accumu-
lated rainfall to determine the fitness; thus the fitness function
is dynamically coupled to the MM5 model. In each succes-
sive generation, the two parameters make independent search
for the optimal solution concurrently; hence there exists no
feedback between the two parameters.

4 Results

In this study, two parameters in MM5 are optimized (i.e.,ε

andν) to improve the QPF skill. The GA converged to solu-
tionsε=0.0111781≈0.01 andν=0.2498580≈0.25, through
global optimization in the fitness function space which has
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multiple minima (not shown). The performance of average
chromosomes improved exponentially, up to the second gen-
eration (i.e., 60 runs of MM5), as the GA discovers and pop-
ulates the best regions in the search space. This implies that
evolution for only a few generations is sufficient to obtain
optimal estimations of parameters.

Figure 1 compares the ETSs computed for the 6-h accu-
mulated rainfall at forecast period of 6–12 h from the follow-
ing five experiments using: 1) the default parameter (CNTL;
ε=0.9, ν=0.1); 2) no convective parameterization scheme
(NC; ε=none, ν=0.1); 3) the revised KF parameter (KF;
ε=0.01,ν=0.1); 4) the revised Asselin filter parameter (AF;
ε=0.9, ν=0.25); and 5) the revised parameters for both the
KF scheme and the Asselin filter (KF-AF;ε=0.01,ν=0.25).
The ETSs of the default run dropped rapidly with increasing
threshold values reaching lower than 0.1 at thresholds larger
than 30 mm. In general, it is noticed that the GA-estimated
parameters give positive effect on increasing the QPF skill,
either independently or together.

In the original KF scheme,ε is set to 0.9; that is, the
convection consumes the pre-existing CAPE by 90%. How-
ever, the GA-estimated value (i.e.,ε=0.01) is quite different
from the original. This implies that the convective rainfall
in the selected case requires almost no consumption of the
pre-existing CAPE. It is notified that, compared with con-
vective systems in the North America, those in the East Asia
include air columns that are thermodynamically more neutral
and nearly saturated up to the mid-troposphere; thus resulting
in a smaller amount of CAPE, especially prior to and during
heavy rainfall (seeLee et al., 1998; Hong, 2004). Therefore,
in applying the KF scheme to convective rainfalls in the East
Asia, it might be essential to assume slow or almost no con-
sumption of the pre-existing CAPE (e.g.,Saito et al., 2006);
however, it does not necessarily mean that the KF scheme is
not applicable to the QPF study in this region.

Compared with the no-convective parameterization ex-
periment (i.e., NC), the KF scheme revised with the GA-
estimation (i.e., KF) shows much higher ETSs at thresh-
olds larger than 40 mm (see Fig. 1). It suggests that the KF
scheme is still useful but with an optimized value ofε in
accordance with the environment that consumes the CAPE
slowly for a heavy rainfall event in the East Asia.

The revised Asselin filter (i.e., AF;ν=0.25) also brings
about improvement in the ETSs for thresholds of 15–50 mm.
Generally, the Asselin filter withν=0.25 removes 21t waves
and reduces the amplitude of 41t waves by half, but with
little effect on longer-period waves; that is, it acts as a low-
pass filter in time. In contrast, the Asselin filter with default
value (ν=0.1) serves as a high-pass filter so that some short-
period waves, including gravity waves, are not filtered out.
Although the Asselin filter is used for the purpose of numer-
ical stability, the result indicates that its impacts on the QPF
are considerable; thus it should be treated with care.

The experiment using both parameters estimated through
the GA (i.e., KF-AF) produced the highest ETSs for almost

Fig. 1. The ETSs of precipitation forecasts in terms of various
thresholds (in mm). Curves denote scores for the 6–12 h accumu-
lated rainfall forecasts for experiments CNTL (control run with de-
fault values), NC (no convective parameterization), KF (using opti-
mized parameter in the KF scheme), AF (using optimized parameter
in the Asselin filter), and KF-AF (using optimized parameters from
both the KF scheme and the Asselin filter).

all thresholds, exceeding 0.6 at thresholds lower than 45 mm.
It is notable that the QPF skill increases prominently when
the two revised parameters are used together in the model.
This suggests that simultaneous use of all optimized param-
eters, both physical and computational, are essential in im-
proving model performances.

Figure 2 represents a 6-h accumulated rainfall for the fore-
cast time from 6 to 12 h for two experiments: 1) with the de-
fault values (i.e.,ε=0.9,ν=0.1) and 2) with the GA-estimated
values (i.e.,ε=0.01,ν=0.25). During the 6-h period between
12:00 UTC and 18:00 UTC 26 June 2006, a heavy rainfall oc-
curred in the west-central part of the Korean peninsula with
a local maximum of 100 mm in Seoul (Fig. 2a). The de-
fault experiment failed to simulate the amount of rainfall –
only 25 mm at the region where more than 90 mm is observed
(Fig. 2b). Meanwhile, the experiment with the GA-estimated
parameters simulated the localized heavy rainfall quite well
with 70 mm peak rainfall (Fig. 2c).

The uniqueness problem in parameter estimation is ul-
timately related to the issue of parameter identifiability
(Navon, 1997). Since the GA is basically a random search
algorithm, the parameter indentifiability can be assessed by
repeating the GA run, each composed of 200 MM5 runs (i.e.,
10 generations× 20 chromosomes), until the best chromo-
somes start to repeat with some regularity.
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Fig. 2. A 6-hr accumulated precipitation (in mm) of (a) observation from 592 rain gauge data, and experiments with (b) the default parameters
and (c) the GA-estimated parameters, ending at 1800 UTC 26 June 2005. The model output is interpolated to the rain gauge locations for
verification.

velopment and growth so that all possible paths would not be
searched in the genetic parameter space (see Deb, 2000).

The model parameters selected for optimal estimation are
the reduction rate of the convective available potential energy
(CAPE) in the Kain-Fritsch (KF) scheme, ε, for convective
parameterization (i.e., physical parameter) and the Asselin
filter coefficient, ν, for numerical stability (i.e., computa-
tional parameter). The optimized solutions are (ε, ν) = (0.01,
0.25). The GA discovered and populated the best regions in
the search space only in a few generations.

Each optimized parameter exerted a favorable influence on
the heavy rainfall forecast by improving the QPF skill. Fur-
ther significant improvement was achieved when two opti-
mized parameters were used simultaneously in the model.
This implies that an interaction between optimized physi-
cal and computational parameters works favorably to bring
about potentially best performance of a numerical model.
Therefore, optimizations of computational parameters as
well as physical parameters and adequate use of optimized
parameters are essential in improving model performance.
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5 Conclusions

In this study, optimal estimation of parameters in a mesoscale
meteorological model (MM5) is performed in the purpose of
improving the quantitative precipitation forecast (QPF) skills
for a heavy rainfall case in the Korean peninsula, employing
a global optimization technique called the genetic algorithm
(GA). The GA is applied to find out optimal parameters di-
rectly using the QPF skill score as a fitness (cost) function.

The GA is robust to complexity and nonlinearity in the
model and thus provides more flexible and direct way of
solving in parameter estimation. Therefore, nonlinear rela-
tions between the fitness function and the model parameters
are well treated in the GA. However, evolutions in the GA
must accommodate physical constraints associated with de-
velopment and growth so that all possible paths would not be
searched in the genetic parameter space (seeDeb, 2000).

The model parameters selected for optimal estimation are
the reduction rate of the convective available potential energy
(CAPE) in the Kain-Fritsch (KF) scheme,ε, for convective
parameterization (i.e., physical parameter) and the Asselin
filter coefficient, ν, for numerical stability (i.e., computa-
tional parameter). The optimized solutions are (ε, ν) = (0.01,
0.25). The GA discovered and populated the best regions in
the search space only in a few generations.

Each optimized parameter exerted a favorable influence on
the heavy rainfall forecast by improving the QPF skill. Fur-
ther significant improvement was achieved when two opti-
mized parameters were used simultaneously in the model.
This implies that an interaction between optimized physi-
cal and computational parameters works favorably to bring
about potentially best performance of a numerical model.
Therefore, optimizations of computational parameters as
well as physical parameters and adequate use of optimized
parameters are essential in improving model performance.
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