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Abstract In this study, the optimal parameter estimation is performed for both phys-
ical and computational parameters in a mesoscale meteorological model, and its
impact on the quantitative precipitation forecasting (QPF) is assessed for a heavy
rainfall case occurred at the Korean peninsula in June 2005. Experiments are car-
ried out using the PSU/NCAR MM5 model and the genetic algorithm (GA) for two
parameters: the reduction rate of the convective available potential energy in the
Kain-Fritsch (KF) scheme for cumulus parameterization, and the Asselin filter pa-
rameter for numerical stability. The fitness function is defined based on a QPF skill
score. It turns out that each optimized parameter significantly improves the QPF
skill. Such improvement is maximized when two optimized parameters are used si-
multaneously. Our results indicate that optimizations of computational parameters
as well as physical parameters and their adequate applications are essential in im-
proving model performance.

1 Introduction

Numerical weather/climate prediction models contain numerous parameterizations
for physical processes and numerical stability. Parameterizations are based on phys-
ical laws but typically contain parameters whose values are not known precisely.
The values of the parameters directly or indirectly affect the performance of model,
and thus uncertainties in parameter values may lead to sensitive results from some
models, especially with high resolution and sophisticated microphysics (e.g., Park
and Droegemeier, 1999). Accordingly, optimal estimation of parameters is one of
several essential factors in improving the accuracy of numerical forecasts.

Recently, efforts have been made to obtain better estimation of parameters for
numerical forecast models using various methods such as the variational technique
using a full-physics adjoint model (Zhu and Navon, 1999), the Bayesian stochastic
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inversion (BSI) based on multiple very fast simulated annealing (VFSA) (Jackson
et al., 2004), the downhill simplex method (Severijns and Hazeleger, 2005), and the
ensemble Kalman filter (EnKF) (Aksoy et al., 2006).

The genetic algorithm (GA), which is a global optimization technique, has also
been applied to some optimization problems including parameter estimation, espe-
cially for simple models. Compared to traditional optimization methods based on
the gradient of a function, the GA is more appropriate when the function includes
some complexities and/or discontinuities (Barth, 1992). Major advantages of the GA
include that: (1) derivatives of fit function with respect to model parameters are not
required; and (2) nonlinearity between the model and its parameters can be handled
(Holland, 1975; Goldburg, 1989; Charbonneau, 2002).

Based on the optimization of model parameters such as the biharmonic horizontal
diffusion coefficient, the ratio of the transfer coefficient of moisture to the transfer
coefficient of sensible heat, and the Asselin filter coefficient, Zhu and Navon (1999)
demonstrated that the positive impact of the optimally-estimated parameter values
persists for longer than that of the optimized initial conditions. The parameter es-
timation problems have been explored to a wide scope including the land surface
parameters (Jackson et al., 2004), the radiation and cloud parameters (Severijns and
Hazeleger, 2005), the vertical eddy mixing coefficient (Aksoy et al., 2006), and even
for the purpose of experiment design (Barth, 1992, Hernandez et al., 1995). How-
ever, attempt has seldom been made on the parameter estimation problem associated
with the quantitative precipitation forecasting (QPF).

This study focuses on optimal parameter estimation to improve the QPF skill in
a mesoscale meteorological model using the GA. Section 2 describes characteristics
of the model and parameters, and Sect. 3 explains the details of GA for parameter
estimation. Discussions on results appear in Sect. 4, and conclusions are provided
in Sect. 5.

2 Case, Model and Experiments

A heavy rainfall case in Korea is selected for experiments. It occurred in the west-
central part of the Korean peninsula, associated with a summer monsoon front, with
a local maximum 6-hr accumulated rainfall of 100 mm in Seoul from 1200 UTC to
1800 UTC 26 June 2005.

In this study, the 5th-generation Pennsylvania State University-National Center
for Atmospheric Research Mesoscale Model (MM5) version 3.6.3 (Grell et al., 1994)
is employed. The computational domain consists of 218 × 181 grids in the horizon-
tal, with a resolution Δx = Δy = 18 km, and 35 layers in the vertical. The model
domain is shown in Fig. 1a along with terrain. The MM5 is integrated up to 12 hrs
starting from 0600 UTC 26 June 2005, with a time step Δt = 45 s. Schemes for
physical processes include: the MRF PBL (Hong and Pan, 1996), the Kain-Fritsch
(KF) cumulus parameterization (Kain, 2003), the Dudhia radiation (Dudhia, 1989)
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Fig. 1 (a) Domain configuration of MM5 along with topography. The inner box indicates the veri-
fication area. (b) The location of the 592 rain gauge stations in Korea used for the QPF verification.
The average distance of rain gauge stations is about 18 km
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and RRTM, the Schultz microphysics (Schultz, 1995), and the five-layer soil scheme
(Dudhia, 1996).

For the parameter estimation study, we focus on the closure assumption of the
KF parameterization and the Asselin filter coefficient in MM5. The “closure” in the
KF parameterization relates the intensity of convective activity to the resolved-scale
properties in a model, and the assumes that convection consumes at least 90% of
the environmental convective available potential energy (CAPE) over an advective
time period, bounded by a maximum of 1 hr and a minimum of 30 min (Kain, 2003).
However, Saito et al. (2006) found that this setting tended to over stabilize the model
atmosphere, making strong rainfall decrease with time in the forecast period of 18
hours. To prevent this undesirable excessive stabilization of the model atmosphere,
the reduction rate of CAPE in the column, for a single application of the KF scheme,
is diminished from the default value to 85%. In this study, an optimal parameter
estimation experiment will be carried out to obtain the optimal value of the “closure
assumption” in the KF scheme.

The temporal differencing in MM5 consists of leapfrog steps with an Asselin
filter (Asselin, 1972). Splitting of the solution often associated with the leapfrog
scheme is avoided by using this filter. It is applied to all variables α as

α̂ t = (1−2ν)α t +ν(α t+1 + α̂ t−1), (1)

where α̂ is the filtered variables, and ν ∈ [0,1] is the Asselin filter parameter. The
value of ν is set to 0.1 in MM5 for all variables (Grell et al., 1994). However, Bryan
and Fritsch (2000) found that the Asselin filter parameter used in MM5 is a source of
the unphysical thermodynamic structures. Another parameter estimation experiment
in this study will be focused to obtain the optimal value of the Asselin coefficient.
The lower bound of the Asselin coefficient is set to 0.01, while its upper bound is
set to 0.3.

3 Methodology of Parameter Estimation

This study aims at performing optimal estimations of two parameters in MM5 us-
ing the GA. The GA is a global optimization approach based on the Darwinian
principles of natural selection. This method, developed from the concept of Hol-
land (1975), aims to efficiently seek the extrema of complex function – see Gold-
berg (1989) for a detailed description. Deb (2000) discussed an efficient constraint
handling for the GA.

A key concept in the GA is the chromosome. A chromosome contains a group
of numbers that completely specifies a candidate during the optimization process.
Typically, the GA uses crossover, mutation, and reproduction to provide structure to
a random search. The GA restricted to mere reproduction and mutation is a version
of stochastic random search. The incorporation of the crossover operator, which
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mates two chromosomes, provides a qualitatively different search, one that has no
counterpart in stochastic grammars. Crossover works by finding, rewarding and re-
combining “good” segments of chromosomes, and the more faithfully the segments
of the chromosomes represent the better we can expect genetic algorithms to per-
form. The GA also uses randomization heavily in choosing a chromosome that will
propagate to future generations. In general, the average fitness of individuals in-
creases with each generation, through the process of natural selection. In each suc-
cessive generation, individuals with bad genes are weeded out while those with good
genes propagate their genetic code. The genetic code that determines the fitness of
an individual is termed, logically enough, the chromosome of that individual. Given
a chromosome, the GA should be able to ascertain its fitness. The performance and
search time depend on the number of bits, the size of a population, the mutation and
crossover rates, choice of features and mapping from chromosomes to the parameter
itself, the inherent difficulty of the problem and possibly parameters associated with
other heuristics.

For the parameter estimation experiments in this study, a GA package called the
PIKAIA (Charbonneau, 2002) is employed. Each generation has 20 chromosomes.
The crossover probability is set to 0.85, implying that 85% of the chromosomes
in a generation are allowed to crossover in an average sense. The maximum and
minimum mutation probability is set to 0.05 and 0.005, respectively.

Internally, the PIKAIA seeks to maximize a function f (X) in a bounded n-
dimensional space,

X ≡ (x1,x2, · · · ,xn), xk ∈ [0.0,1.0]∀k (2)

In our problem, there exist two adjustable parameters, i.e., n = 2. Then we may
associate the reduction assumption of the KF scheme ε with x1 and the Asselin filter
parameter ν with x2. The ranges of parameters are 0 ≤ ε(x1) ≤ 0.95 and 0.01 ≤
ν(x2) ≤ 0.3, respectively.

The function to be optimized (i.e., Fitness) is defined by using a QPF skill score,
the equitable treat score (ETS) (Schaefer, 1990),

Fitness =∑
i

ET Si, i = 1,2, · · · ,100 (3)

where i is the precipitation threshold in mm. Here, the ETS is defined as:

ET S =
H −R

F +O−H −R
, (4)

where H is the number of hits, and F and O are the numbers of samples in which
the precipitation amounts are greater than the specified threshold in forecast and
observation, respectively, and R is the expected number of hits in a random forecast
−R = FO/N, where N is total number of points being verified.

Each generation includes 20 individual MM5 runs as a function of ε and ν. Every
individual run with the two parameters is encoded by chromosomes and returns the
accumulated rainfall to determine the fitness; thus the fitness function is dynamically
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coupled to the MM5 model. In each generation, the two parameters make indepen-
dent search for the optimal solution concurrently; hence there exists no feedback
between the two parameters.

Clearly, the relationship between the fitness function and the model parameters is
strongly nonlinear. Therefore any other robust estimator can be substituted with little
or no changes to the overall procedure of GA. Under the right conditions the GA
has shown to converge to good solutions remarkably quickly and has the advantage
that the rate of convergence varies in accordance with the complexity of the search
space (Goldberg, 1989; Holland, 1975).

4 Results

In this study, two parameters in MM5 are optimized (i.e., the closure assumption of
KF scheme, ε, and the Asselin filter coefficient, ν) to improve the QPF skill using
the GA. Figure 2 depicts performance of chromosomes in terms of generations. In
the first few generations, the performance of chromosomes improves significantly
as the GA discovers and populates the best regions in the search space. The zeroth
generation consisted of 20 chromosomes chosen randomly. The spread of fitness at
the zeroth generation is quite large. This implies that both parameters (i.e., ε and
ν) exert sensitive impact on the precipitation forecasts because the fitness function
is defined in terms of a QPF skill score. The performance of average chromosomes

Fig. 2 Performance of the best chromosome in each generation and of an average chromosome
in a generation. A typical GA does its tuning in stages called generations. The final solution has
(ε,ν) = (0.01, 0.25)
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improved exponentially, up to the second generation (i.e., 60 runs MM5), as the
GA discovers and populates the best regions in the search space. This implies that
evolution for only a few generations is sufficient to obtain optimal estimation pa-
rameters. The final solutions of the two parameters are ε = 0.0111781 ≈ 0.01 and
ν = 0.2498580 ≈ 0.25, through global optimization in the fitness space which has
multiple minima (not shown).

Figure 3 compares the ETSs computed for the 6-hr accumulated rainfall at fore-
cast period of 6–12 hr from the following four experiments using: (1) the default
parameter (CNTL; ε = 0.9, ν = 0.1); (2) no convective parameterization scheme
(NC; ε =none, ν = 0.1); (3) the revised KF parameter (KF; ε = 0.01, ν = 0.1); (4)
the revised Asselin filter parameter (AF; ε = 0.9, ν = 0.25); and (5) the revised pa-
rameters for both the KF scheme and the Asselin filter (KF-AF; ε = 0.01, ν = 0.25).
The ETSs of the default run dropped rapidly with increasing threshold values reach-
ing lower than 0.1 at thresholds larger than 30 mm. In general, it can be noticed that
the GA-estimated parameters give positive effect on increasing the QPF skill, either
independently or together.

In the original KF scheme, ε is set to 0.9; that is, the convection consumes the
pre-existing CAPE by 90%. However, the GA-estimated value (i.e., ε = 0.01) is
quite different from the original. This implies that the convective rainfall in the
selected case requires almost no consumption of the pre-existing CAPE. It is notified
that, compared with convective systems in the North America, those in the East

Fig. 3 The ETSs of precipitation forecasts in terms of various thresholds (in mm). Curves de-
note scores for the 6–12-hr accumulated rainfall forecasts for experiments CNTL (control run with
default values), NC (no convective parameterization), KF (using optimized parameter in the KF
scheme), AF (using optimized parameter in the Asselin filter), and KF-AF (using optimized pa-
rameters from both the KF scheme and the Asselin filter)
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Asia and nearly saturated up to the mid-troposphere; thus resulting in a smaller
amount of CAPE, especially prior to and during heavy rainfall (see Lee et al., 1998;
Hong, 2004). Therefore, in applying the KF scheme to convective rainfalls in the
East Asia, it might be essential to assume slow or almost no consumption of the
pre-existing CAPE (e.g., Saito et al., 2006); however, it does not necessarily mean
that the KF scheme is not applicable to the QPF study in this region.

Compared with the no-convective parameterization experiment (i.e., NC), the
KF scheme revised with the GA-estimation (i.e., KF) shows much higher ETSs at
thresholds larger than 40 mm (see Fig. 3). It suggests that the KF scheme is still
useful but with an optimized value of ε in accordance with the environment that
consumes the CAPE slowly for a heavy rainfall event in the East Asia.

The revised Asselin filter (i.e., AF; ν = 0.25) also brings about improvement in
the ETSs for thresholds of 15–50 mm. Generally, the Asselin filter with ν = 0.25
removes 2Δt waves and reduces the amplitude of 4Δt waves by one-half, but with
little effect on longer-period waves; that is, it acts as a low-pass filter in time. In
contrast, the Asselin filter with default value (ν = 0.1) serves as a high-pass filter so
that some short-period waves, including gravity waves, are not filtered out. Although
the Asselin filter is used for the purpose of numerical stability, the result indicates
that its impacts on the QPF are considerable; thus it should be treated with care.

The experiment using both parameters estimated through the GA (i.e., KF-AF)
produced the highest ETSs for almost all thresholds, exceeding 0.6 at thresholds
lower than 45 mm. It is notable that the QPF skill increases prominently when two
revised parameters are used together in the model. This suggests that simultaneous
optimization and use of all uncertain parameters, both physical and computational,
are essential in improving model performances.

Figure 4 represents a 6-hr accumulated rainfall for the forecast time from 6 to
12 hr for two experiments: (1) with the default values (i.e., ε = 0.9, ν = 0.1; Fig. 4b)
and (2) with the GA-estimated values (i.e., ε = 0.01, ν = 0.25; Fig. 4c). During
the 6-hr period between 1200 UTC and 1800 UTC 26 June 2005, a heavy rainfall
occurred in the west-central part of the Korean peninsula with a local maximum of
100 mm in Seoul (Fig. 4a). The default experiment failed to simulate the amount of
rainfall – only 25 mm at the region where more than 90 mm is observed (cf. Fig. 4a
and b). Meanwhile, the experiment with the GA-estimated parameters simulated the
localized heavy rainfall quite well with 70 mm peak rainfall (cf. Fig. 4a and c).

Overall, it is notable that optimization of parameters improves the QPF signifi-
cantly, in both location and amount of rainfall, especially when two optimized pa-
rameters are used simultaneously. In the selected heavy rainfall case, the closure
assumption of the KF scheme is reduced from 90% (default) to 1% while the As-
selin filter coefficient is adjusted from 0.1 to 0.25 after optimal estimation.

The uniqueness problem in parameter estimation is ultimately related to the is-
sue of parameter identifiability (Navon, 1997). Since the GA is basically a random
search algorithm, the parameter indentifiability can be assessed by repeating the GA
run, each composed of 200 MM5 runs (i.e., 10 generations × 20 chromosomes), un-
til the best chromosomes start to repeat with some regularity.
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Fig. 4 A 6-hr accumulated precipitation (in mm) of (a) observation, and experiments with (b) the
default parameters and (c) the GA-estimated parameters, ending at 1800 UTC 26 June 2005. The
model output is interpolated to the rain gauge locations for verification

5 Conclusions

In this study, optimal estimation of parameters in a mesoscale meteorological model
(MM5) is performed in the purpose of improving the QPF skills for a heavy rainfall
case in the Korean peninsula, employing a global optimization technique called the
genetic algorithm (GA). The GA is applied to find out optimal parameters directly
using the QPF skill score as a fitness (cost) function.

The GA is robust to complexity and nonlinearity in the model and thus providing
more flexible and direct way of solving in parameter estimation. Therefore, nonlin-
ear relations between the fitness function and the model parameters are well treated
in the GA. However, the evolution in GA must accommodate physical constraints
associated with development and growth so that all possible paths would not be
searched in the genetic parameter space (see Deb, 2000).
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The model parameters selected for optimal estimation are the reduction rate of
the convective available potential energy (CAPE) in the Kain-Fritsch (KF) scheme,
ε, for convective parameterization (i.e., physical parameter) and the Asselin filter
coefficient for numerical stability, ν, (i.e., computational parameter). The optimized
solutions are (ε, ν) = (0.01, 0.25). The GA discovered and populated the best regions
in the search space only in a few generations.

Each optimized parameter similarly exerted a favorable influence on the heavy
rainfall forecast by improving the QPF skill. Further significant improvement in the
QPF skill was achieved when two optimized parameters were used simultaneously
in the model. This implies that an interaction between optimized physical and com-
putational parameters works favorably to bring about potentially best performance
of a numerical model. Therefore, optimizations of computational parameters as well
as physical parameters and adequate use of optimized parameters are essential in
improving model performance.

It is noteworthy that the optimally-estimated reduction rate of the CAPE in the
KF scheme is much smaller than the default value, which is consistent with previ-
ous studies depicting slow consumption of pre-existing CAPE in the heavy rainfall
cases in the East Asia (Lee et al., 1998; Hong, 2004); thus representing well the char-
acteristic of the selected rainfall environment. Such tendency in the KF parameter
will be further investigated with more heavy rainfall cases at least near the Korean
peninsula.

Acknowledgements This research was performed for the project of “A study on improving short-
range precipitation forecast skill” funded by the Korea Meteorological Administration (KMA). The
second author is partly supported by the Korea Research Foundation Grant funded by the Korean
Government (MOEHRD) (R14-2002-031-01000-0).

References

Aksoy A, Zhang F, Nielsen-Gammon JW (2006), Ensemble-based simulations state and parameter
estimation with MM5. Geophys Res Lett 33:L12801, doi:10.1029/2006GL026186

Asselin R (1972) Frequency filter for time integrations. Mon Wea Rev 100:487–490
Barth NH (1992) Oceanographic experiment design II: Genetic algorithms. J Atmos Oceanic Tech-

nol 9: 434–443
Bryan GH, Fritsch JM (2000) Unphysical thermodynamic structures in explicitly simulated thun-

derstorms. 10th PSU/NCAR Mesoscale Model User’s Workshop, Boulder, CO, NCAR, Avail-
able from http://www.mmm.ucar.edu/mm5

Charbonneau P (2002) An introduction to genetic algorithms for numerical optimization. NCAR
Tech Note TN-450+IA, 74pp

Deb K (2000) An efficient constraint handling method for genetic algorithm. Comput Methods
Appl Mech Eng 186:311–338

Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment
using a mesoscale two dimensional model. J Atmos Sci 46:3077–3108

Dudhia J (1996) A multi-layer soil temperature model for MM5. Preprints, Sixth PSU/NCAR
Mesoscale Model User’s Workshop, Boulder, CO, NCAR, 49–50



Parameter Estimation Using the Genetic Algorithm 229

Goldburg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-
Wesley, Reading, MA, 432pp

Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR
Mesoscale Model (MM5). NCAR Tech. Note TN-398+STR, 138pp

Hernandez F, Traon R-Y, Barth NH (1995) Optimizing a drifter cast strategy with genetic algo-
rithm. J Atmos Oceanic Technol 12:330–345

Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann
Arbor, 228pp

Hong S-Y (2004) Comparison of heavy rainfall mechanisms in Korea and the Central US. J Meteor
Soc Japan 5:1469–1479

Hong S-Y, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast
model. Mon Wea Rev 124:2322–2339

Jackson C, Sen MK, Stoffa PL (2004) An efficient stochastic Bayesian approach to optimal param-
eter and uncertainty estimation for climate model predictions. J Climate 17:2828–2841

Kain J (2003) The Kain-Fritsch convective parameterization: An update. J Appl Meteoro
43:170–181

Lee D-K, Kim H-R, Hong S-Y (1998) Heavy rainfall over Korea during 1980–1990. Korean J
Atmos Sci: 1:32–50

Navon IM (1997) Practical and theoretical aspects of adjoint parameter estimation and indetifiabil-
ity in meteorology and oceanography. Dyn Atmos Ocean 27:55–79

Park SK, Droegemeier KK (1999) Sensitivity analysis of a moist 1D Eulerian cloud model using
automatic differentiation. Mon Wea Rev 127:2180–2196

Saito K, Fujita T, Yamada U, Ishida J-I, Kumagai Y, Aranami K, Ohmori S, Nagasawa R, Kumagai
S (2006) The operational JMA nonhydrostatic mesoscale model. Mon Wea Rev 134:1266–1298

Schaefer JT (1990) The critical success index as indicator of warning skill. Wea Forecast
5:570–575

Schultz P (1995) An explicit cloud physics parameterization for operational numerical weather
prediction. Mon Wea Rev 123:3331–3343

Severijns CA, Hazeleger W (2005) Optimizing parameters in an atmospheric general circulation
model. J Climate 18:3527–3535

Zhu Y, Navon IM (1999) Impact of parameter estimation on the performance of the FSU global
spectral model using its full-physics adjoint. Mon Wea Rev 127:1497–1517


